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ABSTRACT 

Using algebraic approximations for the Reynolds 
stress equations a general expression has been derived 

for C~ in vt = C~ k2/e which accounts simultaneously 

for the effects of streamline curvature and pressure­
strain in the flow, including wall-induced influences 
on the velocity fluctuations. The expression derived 
can be shown to encompass similar but more specific 
formulations proposed by Bradshaw, Rodi, and Leschziner 
and Rodi. The present formulation has been used in 
conjunction with a k-e model of turbulence to predict 
developing, two-dimensional, curved channel flows 
where both curvature and pressure-strain effects can be 
large. Minor modifications to include the influence 
of curvature on the length scale of the flow near the 
walls produces a significant improvement in the calcu­
lations. While, in general, predictions are in good 
agreement with experimental measurements of mildly and 
strongly curved flows, the model tends to overpredict 
the kinetic energy of turbulence in the inner-radius 
(convex) wall region. This is attributed to a break­
down of the assumption that uiuj/k is a constant in 

the derivation of the general expression for C~. Most 

of the experimental results suggest the presence of a 
weak cross-stream motion due to Taylor-GOrtler vortices 
which cannot be resolved by the calculation scheme. 
Despite its limitations the present formulation pro­
vides a degree of generality not previously available 
in two-equation modeling of turbulent flows. 

INTRODUCTION 

curved channel can be up to 33 percent larger, ·and 
through the convex wall 15 percent smaller, relative 
to that through the walls of a straight channel. A 
similar experimental heat transfer study by Brinich 
and Graham [13) (not entirely free of side-wall-driven 
secondary motion) confirms this result and, in addi­
tion, shows that wnile friction on the inner curved 
wall of a channel can fall below the values for a 
straight channel, friction measurements on the outer 
curved wall yield increases of about 50 percent. 

Three-Dimensional Motions in Curved Channel Flows 
Hunt and Joubert [14] make a distinction between 

two types of curved channel flows: a) 'shear-dominated' 
flows with small curvature effects, (R /D > 20, approxi­c 
~ately), and b) 'inertia-dominated' flows with large 
curvature effects (R /D < 20, approximately). In their c 
study the channel mean radius of curvature Rc was large 

relative to the channel width D, (Rc/D = 100). Thus, 

the flow investigated was a 'curvature-perturbed 
straight flow' as opposed to a flow strongly influenced 
by stream-line curvature. Measurements at three 
Reynolds numbers (Re = DU /v; U = maximum velocity and 

v =kinematic viscosity) :orres;onding to 3 • 104, 
6 • 104 and 1.3 • 105 respectively, indicated small 
variations of about 2% in the longitudinal mean velo­
~ty component. Detailed characterization of this 

' 4 . 
\~locity component for Re = 6 • 10 revealed a Taylor-
GOrtler vortex pattern [21-23] in the central flow 

Th · t f · t 1 me ts and region. The authors comment that the end-wall vortices e ~mpor ance o experJ..men a measure n . 11 • • 

theoretical redictions of turbulent flows over convex ~n the curved c~annel appear to fix the po~~t~on °7 
P . . . the central reg~on structure" although earl~er studies 

and concave surface~ and ~n curved c~annels ~s e~denced (11,24] cite an independence of end wall conditions. 
by the attention wh~ch these two top~cs have and con- Th llul t · t f d b H t d J b rt · · · · 1 fl e ce ar s rue ure oun y un an ou e 
t~nu7 to rece~ve.~n relat~o~ to, for examp e, ow . has been observed in other curved channel flows, both 
cool~ng and eros~on of turb~ne blades and rocket noz- . 1 . [4 25 ] d t bul t · [4 9 ] d · 
zles, flows in compressors, turbomachinery, curved ~n ~nar • an ~ en re~me • • an ~n 
diffusers and channel passages. Cases of studies per- boundary layers develop~ng on conca;e.wal7s [4,11,23? 
t · · t fl urf · ven , 24]. The onset and subsequent ampl~f~cat~on of lon~-
a~n~ng o ows over convex s aces are g~ ~n . . . .. 

[1-7] while similar ex~les pe~taining to flows over tudinal ~ort~ces ~~ characterized by th~/gortler par~-
concave surfaces are ava~lable ~n [4-7]. Curved chan- meter wh~ch ~s def~ned by GT = 43(8/R

0
) ; where 8 kS 

nel studies, where both a convex and a concave surface the boundary layer momentum thickness and R the con-
influence the flow, have been reported in [7-16]. all di f t T . [4] h 

0 
th t f 

In an extensive review of the subject.Bradshaw cave w ra ~s 0 . curva U:e. ~~ s ows a or 
[17] evidences the sensitivity of turbulent flow char- GT $ 0.35 long~tud~nal vort~ces ~11 be dampended in 
acteristics to even small amounts of mean streamline turbulent flow, while for values GT? 0.35 amplification 
curvature. Thus, for example, in the early study by . 
Kreith [18] and in subsequent investigations by depends onthe value of the vortex spackng ~arameter A.8 
Thomann [19] and Mayle et al. [20) it has been shown and the curvature parameter A Rc; where A ~s the spac~ng 
that the heat flux through the concave wall of a between vortices. In the study by Hunt and Joubert 
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GT = 0.87, A 8 = 0.57 and A R = 1430 correspor>ding, 
,C 

in principle, to a marginally stable flow (which it 
was not). Using a stability limit proposed by 
Lezius and Johnston [26) for Taylor-GOrtler vortices 
in rotating duct flow, Hunt and Joubert find that such 
vortices are amplified in curved channel flows with 
Rc/D ~ 90. Again, when applied to their flow, the 

criterion suggests that it should be marginally stable 
and free of three-dimensional structure. 

Although not reported by the authors there is 
evidence in the study by Eskinazi and Yeh [8) 
(R /D = 9.5) supporting the contention that their flow 
co%tained Taylor-GOrtler vortices. As in [14) measure­
ments of shear stress across the channel show good 
agreement with theoretical prediction in the inner­
radius flow region. However, the data for the outer­
radius flow region are in disagreement with the dis­
tribution expected from the wall shear measurements 
and, as pointed out in [14], is most likely an indi­
cation of the existence of a weak secondary flow. 

Finally, it is important to note that Ellis and 
Joubert [9) specifically remark on having observed 
Taylor-GOrtler effects for a radius ratio R /D = 30 

c 
but not for R/D = 6. This finding contradicts expec-

tations based on the stability considerations outlined 
above and suggests that turbulence diffusion and pres­
sure redistribution in the flow near the outer-radius 
wall of a strongly curved channel may be responsible 
for 'smearing out' three-dimensional time averaged 
structures which otherwise would be observed. The net 
effect of these structures can then be looked upon as 
contributing to· the overall process of enhanced mixing 
and turbulence activity in the outer-radius wall region 
of the flow. 

The Prediction of Curved Channel Flows 
As discussed above, concavely curved flows are 

prone to three-dimensional instabilities, but for pur­
poses of numerical computation they are commonly pre­
sumed to be two-dimensional in their mean structure. 
Thus, for example, Simon and Honami [27] include the 
study of Hunt and Joubert [13) among the experimental 
data sets recommended for the testing of two-dimension­
al turbulent flow computational procedures dealing 
with boundary layer flows with streamwise curvature. 
Concave wall boundary layer development predictions of 
longitudinal velocity in [7] are based on the two­
dimensionality assumption and show good agreement with 
experimental measurements. However, similar calcula­
tions for friction factors [6) and turbulent shear 
stress [11) seriously underpredict the values of these 
parameters in the flow region adjacent to the concave 
wall. Likewise, while the fully developed curved 
channel longitudinal velocity predictions of [7] are 
in good agreement with experimental measurements of [9] 
for Rc/D = 6 over ~ost of the channel width, between 

(r- ri)/(r
0

- ri) = 0.85 and 0.96 velocity is under­

predicted by approximately 9%. A similar discrepancy 
does not arise at the inner radius wall of this flow. 
One might attribute the above lack of agreement between 
measurements and calculations to three-dimensional 
Taylor-GOrtler effects as, for example, implied in [11]. 
However, it also seems reasonable to suspect that the 
influence of streamline curvature and/or wall effects 
on turbulent mixing at concave walls may have been 
underestimated. That, in fact, higher levels of tur­
bulent diffusion should arise than were actually pre­
dicted by the models employed. 
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It is argued in, for example, [2,6] that only tur­
bulence modeling approaches based on the calculation 
of Reynolds stresses directly from their transport 
equations can accurately account for streamline curva­
ture and wall pressure effects in curved channel flows. 
Simpler approaches such as in [7], based on a two­
equation (k-E) model of turbulence, require empirical 
modeling of curvature effects in the equation for dis­
sipation of kinetic energy of turbulence and the defini­
tion of a new model constant which must be optimized 
numerically. Even simpler approaches based on the 
mixing-length concept, such as in [10], are seriously 
limited by the need to prescribe different mixing-length 
variations for differently curved flows. 

The present work shows that the k-E model of tur­
bulence can be extended to predict developing curved 
channel flows if c~ in the expression for turbulent 
viscosity (~t): 

~t/p = C (k3/2/E) kl/2 

~--
(1) 

Q, v 
0 0 

is made an appropriate function of streamline curvature 
and accounts for pressure-strain and wall-induced effects. 
In Eq. (1) p is density, k is the kinetic energy of 
turbulence and E is the rate of dissipation of k. The 
symbols Q.

0 
and v

0 
denote characteristic length and 

velocity scales of turbulence respectively, determined 
from transport equations for k and E. The essence of 
the approach pursued in this study is then, that the 
product C Q. in Eq. (1) should yield a modified length 

~ 0 

scale of turbulence (Q,) which reflects the direct in­
fluence of streamline curvature and pressure-strain in 
the flow. Calling C~0 .the value of C~ in the absence 

of these effects it is clear that: 

Q. = (C /C ) 2 (2) 
~ ~0 0 

If the local-equilibrium approximation is made it can 
be shown [28] that C ~ 0.12. The recommended experi­

~o 

mental value is C~0 = 0.09. 

It has been argued by Wilcox and Chambers (1] and 
by So [15] that it is not Q.

0 
but v

0 
in Eq. (1) which 

should be modified for the influence of curvature 
effects. Their arguments are based on the observation 
that the transport equation for k does not manifest an 
explicit dependence on Coriolis and centrifugal accel-

erations and that, as a consequence, v = k1/ 2 mis-
o 

represents the turbulence velocity scale. The study 
by So [15], for example, is based entirely on the 
assumption that the turbulence length scale is 
unaffected by streamline curvature. However, there 
is ample experimental evidence in the work by 
Eskinazi and Yeh [8] showing that both the microscale 
and the integral scale of turbulence are increased at 
the concave wall and decreased at the convex wall of 
curved channel flow. More recently, Prabhu and 
Sundarasiva Rao [16) have shown that the mean inclina­
tion of large scale structures in curved channel flow 
also depends strongly on curvature. The essence of 
their finding is that large eddies are 'flattened' more 
near the convex wall of a curved channel than in the 
concave wall region. 

For models based on the notion of a turbulent 
viscosity as defined by Eq. (1) it would seem to be 
immaterial which of the two scales (2

0 
or v

0
) is modi-



fied to include the influence of curvature (and related) 
effects. However, because it will be consistent with 
'subsequent modifications to be made to the turbulence 
model, it will be the length scale which is modified 
in this work. This approach is consistent with that 
proposed by Bradshaw [17] on heuristic grounds for 
mildly curved flows and parallels to some extent vari­
ous ideas set forth in the studies of Gibson [2], Irwin 
and Arnot Smith [6), So [15], Ljuboja and Rodi [29] 
and Leschziner and Rodi [30]*. The general expression 
derived here for C~ includes as subsets the more speci-

fic expressions derived in (28-30] and yields as a 
special limiting case Bradshaw's proposal (17]: 

(3) 

for the turbulence length scale in mildly curved chan­
nel flows. In Eq. (3) B is an empirical constant of 
order 10, r is the radial coordinate direction (trans­
verse to the flow) and u6 is the value of the local 

longitudinal (streamwise) component of mean velocity 
along a streamline of curvature radius r. 

The modified form of the k-E: model derived here, 
with a general formulation for C~, offers a compromise 

between the potentially more accurate but more costly 
Reynolds stress model closures and the simpler but con­
siderably more restrictive mixing-length calculation 
approaches. In this study attention is fixed princi­
pally on flows in channels with relatively strong 
curvature (Rc/D ~ 20) in which inertial effects are 

dominant. Nevertheless, as will be shown, the extended 
form of the model has also been applied successfully to 
channel flows with mild curvature. 

GOVEIUHNG EQUATIONS AND BOUNDARY CONDITIONS 

The continuity and momentum equations governing 
steady, two-dimensional, turbulent, imcompressible, 
developing curved channel flows are: 

Continuity 

(4) 

r-Momentum 

* Reference (30] came to our attention after the pres-
ent study was completed. 
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In the above equations the Reynolds stresses have 
been modeled according to the Boussinesq assumption 
which relates turbulent stresses to velocity gradients 
through a turbulent viscosity. The effective viscosity 
~eff is the sum of the laminar flow viscosity (~) and 

the turbulent viscosity (~t)' with the latter given by 

Eq. (1). The terms Sr and s6 in equations (5) and (6) 
are given by: 

1 a u 1 aue s = -- (~ (2 ...L + - -)) e r ae t r r ae 
~t aue ue 

+-(---) 
r ar r 

(8) 

In order to solve for the spatial variation of ~t 

transport equations are required for k and e:. Following 
the modeling approach outlined in [31] (based on the 
earlier work of (32,33]) but restricted here to two­
dimensional cylindrical coordinates yields: 

Kinetic energy of turbulence, (k) 

(9) 

Dissipation of kinetic energy of turbulence, (e:) 

[
u 2.g_ + ue ae:] = 1. j_ (~eff r k) 

p r ()r r ()6 r Clr 0
8 

Clr 
2 

+ ..1.. _a (]Jeff ae:) e: e: + c ~1 -k p - c ~2 p -k r2 ae cr E: ae ~ "' 

(10) 

with the production term "P'' given by: 

Values of the constants in the above equations were set 
in accordance with the recommendations of [33]: 
C81 = 1.44, C82 = 1.92 and crk = 1.0. However, the 

value of cre: (customarily fixed to 1.3) was allowed to 

vary with radial location as described further below. 
In order to solve Eqs. (4-q, 9 and 10) boundary 

conditions for u6 , Ur' k and e: are necessary and are 

summarized in Table 1. The table indicates that vel­
ocity components were set equal to zero at the wall. 
However, in order to economize on calculations the 
region between a curved wall and the node P closest to 
that wall was bridged by the standard logarithmic vel­
ocity profile: 



(12) 

where su~script P denotes the grid node position near­
est to the wall, y is the distance from the wall and 
Tw is the wall shear stress. Values of the law of the 

wall constants were set to A = 2.39 and B = 5.45. 
Assuming local-equilibrium of the flow in near-wall 
regions, the law of the wall relation yields: 

(13) 

It is the value of Tw which is actually used as the 

wall boundary condition in the calculation scheme. It 
should be mentioned that an attempt was made to reflect 
the presence of curvature effects inthe law of the wall 
by using an equivalent form of Eq. (8) in the paper by 
Meroney and Bradshaw [11]. Since this approach did not 
yield a significant improvement in the calculations the 
simpler logarithmic relation given by Eq. (12) above 
was adhered to. 

Inlet Plane Exit.Plane At Curved Walls 

ue Prescribed Prescribed Tw specified 
from from through Eq. (13) Experiment Experiment 

aur T specified 
u 0 0 

w . 
r ae-= thnough Eq. (13) 

2 3k Prescribed from k 0.005(UA) 'nl t ae = 0 a simplification v ~ e 
of the k and e: 

(k3/2). equations at the 
~nlet ae: 

0 
walls. See dis-e: -= cussion in text. 0.01 D ae 

TABLE l: Boundary Conditions for Curved Channel Flows 

The wall value of kinetic energy of turbulence, 
~· was found from its standard transport equation 
with the flux from the wall set equal to zero and the 
production term modified to include the wall shear 
stress as given by Eq. (13). The wall value of dis­
sipation of kinetic energy, e:P' was initially deter-

mined by requiring that the turbulence length scale 
vary linearly with distance from the wall. Thus, 
substituting the expression for (au8/ay)P from the 

law of the wall into the simplifie1 (near-wall region) 
turbuient kinetic energy balance yields: 

e: = p (14) 

Where the turbulence length scale is given by 9.
0 

= KY"p 

and K is the Von Karman universal constant. Follow­
ing Bradshaw [17], the extra-stain influence due to 
curvature effects on the magnitude of the turbulence 
length scale near the walls can be modeled according 
to E~. (3) for regions of the flow in which 
8 = I(U8/r)/(au8/3r)l $ 0.05. Thus, an expression for 

4 

dissipation at the near-wall node P which includes the 
influence of streamline curvature effects is: 

e: = p 

c3/4 k3/2 
}!0 p 

K
1 

Yp 

where K1 = K(l f 8 Op). 

(15) 

Following Launder and Spalding [ 33] , the equation 
for dissipation of kinetic energy in the near wall 
region simplifies to: 

1 a vt ae: e:2 
0 =-- (- r -) + C £ P- C (16) 

r ar (J e: ar e:l k €2 k 

Assuming local-equilibrium in the flow and recalling 
Eqs. (l) and (15) the above expression may be rewritten: 

0 = -l _3 t~J.O k
2

/E: r dE:~ + 3/2 (_ k )
2 

r 3r \- OE: 'drJ (CE:l - CE:2) Cj.!O \K'y (l7) 

Further assuming that ~~ = 0 in the near wall region 

[33] it may be shown that Eq. (17) simplifies to the 
following curvature-modified expression for cre:: 

K'2 
(18) 

(c C ) C
l/2 

e:2 - E:l j.!O 

In the standard form of the k-e: model of turbulence the 
value of cre: is fixed to the wall value of 1.3 through-

out the flow [33]. In this study cre: at any radial 

location was linearly interpolated from the near-wall 
grid node values determined by means of Eq. (18). 

GENERAL EXPRESSION FOR CJ.l 

Prior to outlining the detailed derivation of the 
general form of the CJ.l coefficient, it is instructive 

to justify by means of a simple example the advantages 
in an improved modeling of this coefficient. Combina­
tion of Eqs. (1-3) readily yields the expression: 

(19) 

This equation is a limiting form of the more ~eneral 
relation sought in this study. While Eq. (19) accounts 
for the influence of mild curvature effects on the 
turbulence length scale t

0 
through the curvature para-

meter (l ± 8 o) a more general relationship in desir­
able, in which arbitrary streamline curvat.ure, pres­
sure~ strain and wall pressure corrections are simultan­
eously included. The purpose of this section is to 
outline the derivation of this more general expression, 
obtained by substitution of an expression for the 
turbulent shear stress (determined from an algebraic­
stress model) into a Boussinesq approximation for the 
shear stress in which the turbulent viscosity is 
given by Eq. (1). 

The Reynolds Stress Equations 
The starting point for the present analysis is the 

high-Reynolds number form of the ~ transport equa-
~ J 

tion given in [29]. In three-dimensional Cartesian 
coordinate notation and neglecting molecular diffusion 
this equation is: 



Clu.u. 
u --1...1. = -
k a~ 

rr .. 
J.J 

J_ aui _ au3l aui ·~ 
rj~ a~ + ui~ a~ - 2

\) a~ a~ 

p ij 8 ij 

a~ \u1uJ"k • * i'Jku1 • 'ik"J)l 
Dij 

(20) 

In the above equation Pij represents the production of 

uiuj and requires no approximation. Viscous dissipa­

tion (Eij) and contributions to the pressure-strain 

term (Tlij) were modeled as in [29]. The forms of these 

terms are: 

2 
Eij = 3 E Oij (isotropic dissipation) (21) 

and 

ITiJ = rriJ,l + ITiJ,2 + ITiJ,l + ITiJ,2 (22) 

In Eq. (22) IT .. 1 represents contributions to the 
lJ' 

pressure-strain arising from fluctuating velocities 
only, while ITij, 2 accounts for the interaction between 

the mean strain and fluctuating velocities. The addi­
tional contributions Tl!j 1 and IT!j 2 represent pressure-

l. " l. ' :. 
strain corrections due to the effect of walls on the 
level of turbulent fluctuations in the flow. These 
terms were modeled as shown in Table 2 and correspond 
to model 2 of [34]. Values of the model constants are 
also given in the table. 

Term 

IT .. 1 lJ, 

ITi_j,l 

Approximation* 

2.2 

C' (IT o -lIT onJ -lIT o . )f(~) · 2 1 nn,2 ij 2 ni,2 2 nj,2 nJ. y' 

c2 o.45 

were taken from [29]. 

The diffusive transport of ~ is attributed 
]. J 

primarily to turbulent velocity fluctuations [34] for 
which the simple gradient diffusion hypothesis of Daly 
and Harlow [35] yields: 

(23) 

where C' is an empirically determined constant (not 
s 

needed in this study) . 

The "f" \-fall Function 
In the approximations for IT!j 1 and IT!. 2 given 

]. ' lJ' 
in Table 2, n denotes the normal to the wall while y is 
the distance from the wall (always measured positive in­
to the flow). The role of the function f(t/y) is to 
diminish the magnitude of the wall pressure correction 
to the total pressure-strain with increased distance 
from the wall. The form of the f function depends on 
the length scale t of the energy-containing eddies and 
for straight channel flows is given by [34]: 

(24) 

where D is the channel width. Eq. (24) reflects the 
fact that distance-weighted contributions to f at any 
point in the flow arise from both walls. In the expres­
sion the constant C is chosen such that f + 1 as y + 0. 

Therefore, setting~= c314 k3/ 2/KY (the inertial sub-
~0 3/4 

layer value), in Eq. (24) yields Cw = K/C~0 • 

For straight channel flows the function f is sym­
metrical with respect to the symmetry plane, where it 
possesses a minimum value. This is consistent with 

Source and Comments 

Rotta (36]; Contribution to IT .. from fluctuating 
J.J 

velocities only. Return to isotropy proportional 
to level of anisotropy. Term acts to isotropize 

n· 
Launder, Reece and Rodi [34); Contribution to ITij 

from interaction between mean strain and fluctua­
ting velocities. Term acts to isotropize Pij' P 

: s = t:e lp:~:uct{~~: :f 3_n}et:c s::e:: o:1:~bulence ( k) : 

2 ]. j axj axi 

Daly and Harlow [35] and Shir (37]; Additive cor­
rection to IT. . due to wall effects. Subscript 

lJ ,1 
n denotes direction normal to the wall. 

Gibson and Launder (38]; Additive correction to 
ITij, 2 due to wall effects. Subscript n denotes 

direction normal to the wall. 

TABLE 2: Approximations Used in Pressure-Strain Correlation 
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the notion that at the symmetry plane the walls of a 
straight channel should generate equivalent pressure­
fluctuation contributions to the pressure-strain terms. 
The same will not be the case for channel flows in 
which an asymmetric geometrical condition exists; for 
example, straight channel flows with one smooth wall 
and one rough wall, and curved channel flows. In these 
cases the position of the minimum value of f in the 
flow will be shifted towards the wall contributing 
least to changes in the turbulence by wall pressure 
fluctuation effects; (i.e., the convex wall in a curved 
channel or the smooth wall in an asymmetrically rough­
ened channel). In this work the location for the mini­
mum in the f function has been assumed to coincide with 
the location of zero turbulent shear stress. This is 
consistent with the notion that the length scale of 
the energy-containing motion, which also transmits the 
pressure-fluctuations effects, should be smallest at 
the zero shear stress position. See, for example, the 
data in [8] and Eq. (30) and related discussion in [2]. 
In this way the flow is divided into two regions in 
either one of which the wall nearest to that region is 
the major source of wall-induced contributions to the 
pressure-strain correlation. 

A general expression for f which accommodates both 
the symmetric and asymmetric conditions referred to 
above is: 

(25) 

In Eq. (25) y is taken as the distance into the flow 
measured from the wall which induces the largest con­
tributions to the wall-correction terms: i.e., the 
rougher of two walls in a straight channel or the con­
cave wall in a curved channel. The value of m can be 
determined exactly from experimental measurement. For 
curved channel flows Ellis and Joubert [9] provide the 
locations of zero turbulent shear stress as a function 
of curvature ratio. The data can be grouped into 
strongly curved (Rc/D < 20) and mildly curved 

(Rc/D > 20) flows for which the positions of zero shear 

stress are y/D = 0.68 and y/D = 0.55 respectively. 
Setting to zero the y-differentiated general expression 
for f and using the above values for y yields m = 7.95 
for strongly curved flows and m = 2.56 for mildly 
curved flows. Form= 0 Eq. (25) reduces to the 
straight channel result given by Eq. (24). 

Derivation of the C Function 

Following Rodi [28], algebraic expressions for 
the Reynolds stresses are obtained from Eq. (20) by 
assuming that the ratio uiuj/k is constant throughout 

the flow field. Although inexact, this assumption 
allows convection minus diffusion of the Reynolds 
stresses to be expressed as a function of turbulent 
kinetic energy production (P) and its rate of dissipa­
tion ( e:): 

u auiuj - uiuj 
9, 3 - D .. - k (P - e:] 

x9, l.J 
(26) 

Substitution of Eq. (26) into Eq. (20) yields: 

u.u. 
_2:_,l_ [ p - e:] 

k 
(27) 
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from which the algebraic relations for U.U. may be ob-
1 J 

tained. For the two-dimensional curved channel flow of 
-2 -2 

interest to this work the turbulent stresses u6 , ur 

and u
6
ur are given in cylindrical coordinates in the 

appendix. 
Although the algebraic manipulations are lengthy 

the general form of C~ (derived in the appendix) is 

obtained by substituting Eq. (A-12) for u8ur and Eq. (1) 

for ~t into the Boussinesq approximation for u
6
ur: 

-ii\1 "' ~t (aue - ue + l aur\ 
e r p ar r r ae 1 (28) 

The final result may be cast into compact notation form 
and is given by: 

(29) 

The coefficients in Eq. (29) are also given in the 
appendix. They are complicated algebraic expressions 
which may be written in terms of dimensionless velocity 
gradients (one of which, 8, reflects streamline curva­
ture effects), the ratio P/e:, and the wall function f 
(reflecting the influence of wall pressure fluctuations). 

Eq. (29) has only one positive root for c~12 given by: 

C~/2 = 2 Ql/2 co{t cos-l(R Q-2/3~.- a31 (30) 

with 

(31) 

Limiting Expressions for the C~ Function 

The general expression for C~ given by Eq. (30) has 

several interesting limiting forms attesting to its 
validity. These are listed below. 

Variation of C~ for flow in the presence of a 

flat wall. In this case, previously studied by Ljuboja 
and Rodi [29] in relation to wall jet flows, the in­
fluence of pressure-strain (including wall-dampening 
of velocity fluctuations normal to the wall) is retained 
in determining the variation of C~, but the authors 

neglect the convective/diffusive transport of u8ur 

(uv)in [29]). Also neglected were longitudinal grad-
au aue /av au \ 

ients of velocity, and a:/a;- \a/ay in [29ywas set 

equal to zero. The latter assumptions correspond here 
to setting oa = ob = oc = 0 in the'expressions for al, 

a2 and a
3 

in C~. Also, neglecting the transport of 

lieur and realizing that for a flat wall 8 = 0, Eq. (30) 

reduces to: 

2 (1 - C2) (C1 - 1 + c2 P/e:) 
c =- (c1 - 1 + P/e:) ~ 3 cl 

(1 - 2 
82C2 p /e: 

f) 
c1 - 1 + c2 P/e: 

X 
C' 

(1 + 2 c 1 f) 

1 - 1 + P/e: 

c t:' 
(l +l~f) 

· 2 1 - c
2 

C' 
(1 + l ~f) 

2 cl ( 32) 



This is exactly the expression for C obtained in [29]. 
ll 

Variation of C for flow with variable P/e. This 

case has been investigated by Rodi [28]. Streamline 
curvature and wall effects in the pressure-strain terms 
were ignored, but the transport of u8u (ii"':'ii":" in [28]) 

r 1 J 
and variations in the value of P/e were retained in the 
formulation. The assumptions correspond to setting 
oa ob = oc o = f = 0 for which Eq. (30) yields: 

2 (1 - c2J (1 - (1 - c2 P/E)/C1 ) 
ell = 3 c 2 ( 33 ) 

1 (1 - (1 - P/e)/C1 ) 

Eq. (33) corresponds to the expression for c
11 

given in 
[28]. 

Variation of C for flow with streamline curva-

ture. This case has been studied by Leschziner and 
ROdi (30] in relation to free jet flow in which local­
equilibrium of turbulence was assumed. Wall pressure­
corrections and longitudinal gradients of velo-

()U au
6 city were set equal to zero as was the ratio a: Ia;;-· 

As above, these assumptions lead to setting 
Oa = Ob = Oc = f = 0, in addition to P = E, for which 

Eq. (30) yields (after lengthy algebraic manipulation): 

ell = 

_g_ (~)fC2 + C1 -1) 
3 c1 \ c1 ( 34) 

corresponding to the expression for ell given in [30]. 

Variation of C for flow with small o in the 

presence of a curved wall. This case corresponds to 
the near wall regions of curved channel flow where the 
local-equilibrium assumption (P = E) applies. Wall­
pressure-corrections in the pressure-strain terms are 
retained by setting f = 1, but streamwise gradients 

aur au6 of velocity components and ar;-1-ar are neglected 

(oa = ob = oc = 0). T~ing the limit of Eq. (30) for 

small o yields the expression: 

ell (35) 

Comparing the above expression with Eq. (2) and recall­
ing Eq. (3) shows that C = 0.056 and 6 = 12.17. This 

llO 
value for 6 is in good agreement with the values reco~ 
mended in the literature; for example, Eide and 
Johnston [39] suggest 6 = 12 for both concave and con­
vex walls while Bradshaw [17] recommends 6 = 9 at a 
concave wall and 6 = 14 at a convex wall. Similarly, 
the value for C obtained here falls in the range of 

]JO 

values calculated for turbulent wall jets in [29]; in 
that study the authors found that ell ~ 0.05 in the 

near wall region of their jet flow. 

the preprint seen by us of reference [30] the 2/3 
factor is missing in Eq. (34). 

* 
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THE NUMERICAL SCHEME 

It is required to solve the transport equations 
(4-6, 9 and 10) in conjunction with the boundary con­
ditions discussed above and summarized in Table 
1. Finite difference equations are obtained by volume 
integration of the transport equations over control 
volumes or "cells" into which the flow domain is dis­
cretized. Details concerning the method for deriving 
the difference equations and the inclusion of boundary 
conditions are provided in, for example, [40,41], while 
an exposition and thorough discussion of the philosophy 
underlying the calculation approach followed here is 
available in [42]. 

The velocity components, pressure, kinetic energy 
of turbulence and dissipation of kinetic energy of tur­
bulence are the dependent variables calculated on stag­
gered, interconnected grids, each of which is associated 
with a specific variable (all scalar quantities share 
the same grid node locations). The general form of the 
finite Qifference expressions is given by: 

(36) 

where $p represents any one of the dependent variables 

solved for at the grid node 'P'. The Ai coefficients 

are determined at the respective cell surfaces and 
they represent combined contributions ar1s1ng from 
diffusion and convection to the balance of $. The 
terms S

0 
and SP represent other contributions arising 

from sources (or sinks) in the flow. 
The numerical procedure used to solve the finite 

difference equations was the Imperial College "TEACH-2E" 
code [43]. Together with appropriately differenced 
boundary conditions, elliptic forms* of the equations 
are solved by means of a cyclic series of predictor­
corrector operations involving the use of the tri­
diagonal matrix algorithm applied on a line-by-line 
basis to the calculation domain. From an initial or 
intermediate value of the pressure field an intermediate 
velocity field is found. By means of the SIMPLE (42] 
algorithm, pressure corrections are determined by 
bringing the intermediate velocity field into conform­
ity with continuity. After corrections to the pressure 
and velocity fields are applied, the transport equations 
for kinetic energy of turbulence and its rate of dis­
sipation are solved. Within each iteration various 
sweeps are made of the entire calculation domain along 
the main flow direction. The above steps are repeated 
until a pre-established convergence criterion is satis­
fied; usually, that the largest of the normalized re-

siduals be less than 5 10-3. 
All the numerical calculations were performed on 

a 20 x 40 grid, evenly spaced in the main flow (6) 
direction and unevenly spaced in the radial (r) direc­
tion, after ascertaining that this degree of refine­
ment was sufficiently accurate for the purposes of this 
study. The storage required on a CDC 7600 computer was 
61 k8 words, and a typical (converged) run time for 300 

iterations (3 sweeps per variable) was 130-150 CPU sec­
onds. 

principle, for the flows calculated here, parabolic 
equations should suffice since there are no streamwise­
reversed f'low regions. However, parabolic procedures 
have been shown [44] to lead to poor estimates of the 
pressure fields in strongly curved duct flows and dic­
tated the choice of the elliptic scheme. 



CAL~JLATED RESULTS AND DISCUSSION 

In this section results are reported of two-dimen­
sional numerical calculations performed using the mod­
ified two-equation (k-E) turbulence model and the gen­
eral expression for CJl given by Eq. (30). In the fig-

ures this case is refered to as the "extended" k-E 
model. The calculations cover both midlly and strongly 
curved channel flow geometries and include the straight 
channel flow data of Laufer [45] as a limiting test 
case. Prior to presenting the calculated cases, how­
ever, a discussion is in order regarding the dependence 
of ell on curvature and wall pressure-fluctuation 

effects. Also, since it is assumed in the derivation 
of the general expression for ell that the ratio u.u./k 

~ J 
remains constant in the flow, the limitations of this 
assumption and its effect on the calculations should 
be assessed. 

4.0 
_"J_!~(~:_ 10 

0.0 

• 2.0 

•4.0 

0.0 0.2 0.4 

e Eskinazi dnd Yeh (8] ; Re " 148,400; 

Rc/0 ., 9.5; a ~ 300° 

0 Laufer (45]> Re ., 123,200; fully 

developed straight channel flow 

A Hunt and Joubert (14); Re "' 60,000; 

R/0 " 100; a .. 43° 

0.6 0.11 1.0 

Fig. 1 Transverse variation of urue/k (uv/k) in fully 
developed curved and straight channel flows 

Figure 1 :!.s a plot of measurements of u
8
ur/k 

for three channel flows ranging from strongly curved 
to straight. In [8] values of k were not provided but 

. -z ~ 
could be est1mated from the data for u8 and ur by 

2-2. 1-2-2-2 
assuming that u "' u 1n k = 2( u8 + u + u ) . 

z e r z 

The straight channel flow results show two regions, 
corresponding to (r- r.)/(r - r.) < 0.20 and 

1 0 1 -

(r - r. )/(r - r.) > 0.80 respectively, wherein 
1 0 1 -

I u8u/k \ is approximately constant. Similarly, in the 

inner-radius wall region the curved channel flows also 
show relatively constant values of this ratio for 
(r- ri)/(r

0
- ri) ~ 0.20. By contrast, in the outer-

radius wall region, the constancy of the ratio is 
extended (relative to the straight channel flow case) 
to values of (r- r.)/(r - r.) > 0.60. In the region 

l. 0 1 -

0.20 ~ (r- ri)/(r
0

- ri) ~ 0.65 the assumption of 

constant u.u./k is obviously invalid and curtails 
l J 

the usefulness of the general expression for ell. 
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Fig. 2 Transverse variation of ell in fully developed 

curved and straight channel flow. For m = 0 wall­
function f is symmetric. Calculations based on 
extended k-E model . 

Figure 2 shows the variation of ell as a function 

of radial position in channels of different curvature. 
In general CJl is seen to increase at both walls of a 

curved channel, at a rate inversely proportional to 
channel curvature (defined earlier as Rc/D). At the 

inner-radius wall CJl reaches a maximum value at a rad­

ial location dictated by the channel curvature. As of 
this location ell diminishes with increased distance 

from the inner-radius wall. For strong curvatures the 
general function for ell yielded unrealistic values of 

this parameter in the region 
0.30 ~ (r - ri)/(r

0 
- ri) ~ 0.65 due to the lack of 

constancy in the ratio u.u./k. However, numerical cal-
l J 

culations revealed an insensitivity of the results to­
wards the absolute value of ell in this flow region 

provided that it was contained within the range 
0.045 ~ ell ~ 0.140. This insensitivity is explained, 

in part, by the small values of 3U8/3r and the respec­

tively counteracting curvature influences which arise 
in the core region of curved channel flow. In the 
present study C was set to the value 0.09 in the 

jJ 

region 0.30 ~ (r- ri)/(r
0

- ri) $ 0.65. 

'tlall curvature and wall pressure fluctuatians 
contribute jointly to the value of ell. In an effort 

to separate these two effects, and thereby establish 
their relative importance, two sets of ell profiles 

in Figure 2 (Rc/D = 10, 20) have been calculated with 

a symmetric distribution of the f function imposed 
(m = 0); equivalent to specifying a straight channel 
flow condition in so far as wall pressure-corrections 



are concerned, while retaining the direct influences 
of the respective wall curvatures on C~. Inspection 

of these profiles shows that curvature at the outer­
radius wall acts to enhance C while curvature at the 

~ 
inner-radius wall acts to suppress it. The inclusion 
of wall pressure-corrections in the pressure-strain 
(m = 1.58, m = 7.94) further increases c~ at both walls, 

but at the inner-radius wall the direct influence of 
curvature effects ultimately overcomes the wall pres­
sure contribution to C~ causing a net decrease in its 

value with increasing distance from the inner-radius 
wall. 

1.0 Re " \48,400 

R,to 
7.!14 10 

0.8 \,58 20 

f(+) 

Fig. 3 Transverse v~riation of wall-function f in 
fully developed curved and straight channel flow. 
Arrows denote cut-off values corresponding to C~. 

Calculations based on extended k-£ model. 

Plots of the f function are shown in Figure 3 for 
various curvature ratios and, as anticipated, in all 
cases the function decreases with increased distance 
from either channel wall, reflecting the decreased 
influence of wall-corrections to the turbulent flow. 
The plots also show that at a fixed radial location 
the f function decreases strongly with increased 
curvature at the'inner-radius wall, while increasing 
only slightly in the outer-radius wall region bounded 
by 0.85 ~ (r- r.)/(r - r.) < 1. These observations 

l. 0 l. -

are in agreement with the algebraic stress model pre­
dictions in [2] and illustrate the point that convex 
surfaces are considerably less effective in dampening 
wall-pressure contributions to turbulent flows 
than are concave surfaces. Since C~ can be shown to 

be inversely proportional to the f wall-function the 
above observations suggest that pressure fluctuations 
will contribute more strongly to C~ at the inner-radius 

wall than at the outer-radius wall with increasing 
channel curvature. That this is the case is confirmed 
by comparing the relative increases between pairs of 
inner-radius wall C~ profiles in Figure 2 (with the 

different f functions specified) for Rc/D = 20 and 

Rc/D = 10. By contrast, relative changes in the C~ 

9 

urofiles at the outer-radius wall are smaller and of 
~omuarable magnitude for both curvatures. This suggests 
that it is principally the direct influence of curvature 
effects which determines the shape of the C~ profiles in 

the outer-radius flow region, with the magnitude of C~ bei 

changed only slightly by the wall-pressure effects on the 
flow. It should be noticed that the same cut-off values 
set for C~ apply to the f function since the effects of 

the latter parameter appear exclusively through the forme; 

1.0 

U/UIMK Data fi"'Oh Laufer (45]; Re ~ 123,200 
k/~ 

4.0 
-- extended kqt:. model 

.. ---~- standard k~£ model (C 11 ~0.09) 
---- Reynolds stress oodel of 

HanJalic and Launder (46) 
3.0 

-
0.4 2.0 

0.0 0.4 0.6 o.a 1.0 
y , __ 

0/2 

Fig. 4 Transverse variation of normalized streamwise 
velocity and kinetic energy of turbulence in fully 
developed straight channel flow. Umax and u, are 
maximum and friction velocity respectively. 

Prior to conducting curved channel flow predictions, 
the calculation scheme and the turbulence model in its 
extended form, including the general formulation for 
C~, were tested by reference to straight channel tur-

bulent flow measurements of Laufer [45]. The law of the 
wall constants used in Eq. (12) were those specifically 
recommended by Laufer: A= 3.0 and B = 5.5. Figure 4 
shows predictions using a standard (C~ = 0.09; f = O) 

k-£ model of turbulence with predictions using the 
extended version of the model offered here. Also 
included in the figure are predictions based on the 
full Reynolds stress closure approach proposed by 
Hanjalic and Launder [46] (the profiles shown were 
taken from Hanjalic [47]). While all three models 
yield excellent agreement between calculated and 
measured velocity profiles the figure shows that the 
inclusion of wall pressure-corrections in the general 
formulation for c~ leads to an improved prediction of 

turbulent kinetic energy near the wall. In fact, it 
is surprising to find that across the whole channel 
better predictions of k are given by both the two­
equation models than by the Reynolds stress closure. 

Various predictions of flow velocity, friction 
factor and kinetic energy of turbulence are presented 
in Figures 5 to ll for mildly and strongly curved 
channel flows. Calculations of mean velocity corre­
sponding to the mildly curved (R /D = 100) channel 
geometry of Hunt and Joubert [141 provided in Figure 5 



Fig. 5 Transverse variation of normalized streamwise 
velocity in developing mildly curved channel flow. 

show very good agreement with the measurements. Minor 
deviations are displayed between the measurements and 
the calculations at Rc8/D = 36 and 60 in the inner and 

outer-radius wall regions. These are attributed to 
the presence of a weak Taylor-Gortler type secondary 
motion which was observed in the measurements. 

3.0 

1.0 

10•--:rl'lall:ri 

0' -~- .. :rwall ~ ro 

($.0) Q.ata from Hunt and Joubtrt (14]; 
Re ~ 60,000; RJO " 100; ~ ~ 43° 

CalculdtiOns based on extended k~l; mdel 

Fig. 6 Transverse variation of kinetic energy of 
turbulence normalized by respective wall friction 
velocities in (developed) mildly curved channel flow. 

Figure 6 shows good agreement between calculated and 
measured values of the turbulent kinetic energy in the 
outer-wall region of the ~low. The model overpredicts 
the measured levels of k by about 17% in the region 
0.25 < (r - r. )/(r - r.) < 0.50. This suggests that 

- l 0 l -

stabilizing curvature effects on the flow at the con­
vex wall may have been underestimated by the model in 
this region of the flow. 
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Re" 103,960; Rc/0" 9.25; 
01 = 90° wils downstream Doundary plane. 
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Fig. 7 Transverse variation of normalized streamwise 
velocity in developing strongly curved channel flow: 
Re = 103,960; Rc/D = 9.25. 

Calculations for the strongly curved channel ge­
ometries of Ronami et al [10) (Rc/D = 9.25) and 

Eskinazi and Yeh (8] (Rc/D ~ 9.5) are given in Figures 

7 to 10. Mean velocity profiles provided in Figures 7 
and 8 show significant discrepancies between measure­
ments and calculations near the outer-radius wall. In 
both cases the discrepancies are slightly worse when 
the less general expression for C~ given by Eq. (34), 

with only curvature effects retained, is emplcyed. As 
above, this discrepancy is also attributed to the 
presence of Taylor-Gortler vortices. The measurements 
of Honami et al suggest a develc,ping cross-stream 
motion at the outer-radius wall between Rc8/D = 4.84 

(30°) and Rc8/D = 11.30 (70°). Similarly, as discussed 

in the introduction, there is evidence in the shear 
stress measurements of Eskinazi and Yeh of a Taylor­
Gortler type cross-stream flow which would account for 
part of the discrepancy shown by the results in Figure 
3. 

Measurements of the friction coefficient from the 
study of Honami et al are compared in Figure 9 with 
calculations conducted at three levels of refinement 
of the k-E model of turbulence. The best results 
correspond to the extended k-E model in which C~ 
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Fig. 8 Transverse variation of normalized streamwise 
velocity in developing strongly curved channel flew: 
Re = 1L3,400; Rc/D = 9.5. 

is specified according to the general Eq. (30) and in 
which length-scale curvature adjustments are incor­
porated in the calculation of dissipation and dissi­
pation Prandtl number near the walls. While the agree­
ment between measurements and calculations with the 
extended model is very good at the inner-radius wall, 
it is at the outer-wall where inclusion of the above 
effects produces the largest improvements. The pre­
dictions by Honami et al of this flow are also included 
for comparison. Calculations of the friction coeffi­
cient for the flow of Eskinazi and Yeh also yielded 
similar agreement when using the extended version of 
the k-s model offered here. 

Calculations of the kinetic energy of turbulence 
for the channel flow of Eskinazi and Yeh are presented 
in Figure 10. The profiles showing the best overall 
agreement with the measurements correspond to the pres­
ent model although differences between models are seen 
to decrease towards the center of the flow. As for 
the case of the data of Hunt and Joubert (Figure 6) 
calculations in the outer-radius wall region are in 
better agreement with the measurements than at the 
inner-wall. The magnitude of the discrepancy in the 
inner-radius wall region appears to be inversely pro­
portional to the curvature ratio (Rc/D) since for the 

more strongly curved flow of Eskinazi and Yeh the 
level of k is rnerpredicted by between 30 to 50%. 

Calculations corresponding to the mean velocity 
measurements of Ellis and Joubert [9] are shown in 
Fi~~re 11 where they are compared with calculations 
by Launder et al [7] using a k-s model of turbulence 
along the lines of Jones and Launder [48]. In the 
model of Launder et al curvature effects on the length 
scale of the flow are included via an empirical modi­
fication to the dissipation equation. This consists 
in making the coefficient cs2 in Eq. (10) a function 

of a turbulent Richardson number. This approach has 
been criticized by Gibson (2], and by Rodi [49] who 
argues that the appropriate place to make such a 
modification is in the production term of the dissi­
pation equation. 
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Fig. 9 Streamwise variation of friction factor at the 
inner and outer walls of strongly curved channel flow. 
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Fig. 10 Transverse variation of normalized kinetic 
energy of turbulence in strongly curved channel flow. 

The predictions of Launder et al show slightly 
better agreement with the measurements at the outer­
radius wall, but at the inner-wall the present model 
yields better results. It is difficult to decided on 
the basis of this limited comparison which model is 
better for the prediction of curved channel flows in 
general. However, in view of the points raised by 
Gibson (2] and by Rodi [49], and given the fact that 
the model of Launder et al requires an additional 
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Fig. 11 Transverse variation of normalized angular 
momentum in strongly curved channel flow. 

constant and its numerical optimization, it would seem 
that the model offered here is of a more general 
nature. 

CONCLUSIONS 

By consideration of Reynolds stress equations in 
algebraically modeled form a general expression has 
been derived for the coefficient C~ in the expression 

for turbulent viscosity vt = c~ k2/g. The generalized 

form of this coefficient includes streamline curvature 
and wall pressure fluctuation effects and, hence, 

tl,eir influence on the turbulent length scale (k3/ 2 /d 
in the flow. The expression derived has been shown 
to include limiting forms given by less general form­
ulations obtained in other works. One of these forms 
corresronds to the proposal by Bradshaw, Eq. (3) in 
the text, and yields values of the constants i3 = 12.17 
and Cuo = 0.056 which are in good agreement with values 

established in the literature. 
Predictions of developing two-dimensional curved 

channel flow have been conducted by incorporating the 
general expression for Cu into a k-€ model of turbu-

lence modified to include the direct'influence of 
curvature effects on the length scale in near-wall 
regions of the flow. In general, agreement between 
the measurements and the calculations is good. The 
largest discrepancies observed in the calculations of 
mean velocity arise at the outer-radius wall and are 
attributed to the existence of cross-stream motions 
(Taylor-Gortler vortices) in the experiments. The 
present model consistently over-predicts the kinetic 
energy of turbulence in the inner-radius wall region 
of curved channel flow. The degree of overprediction 
is inversely proportional to mean channel curvature 
(Rc/D). This discrepancy is attributed to a failing 

of the model to accommodate fully the stabilizing 
influences of convex curvature on turbulent flow due 
to the breakdown of the assumption underlying the 

formulation, that uiuj/k is a constant everywhere in 

·the flow. 
It is a noteworthy feature of the extended k-s 

model presented here that none of the previously 
established model constants have been modified or fine­
tuned to yield improved agreement between predictions 
and measurements. This includes the new parameter m 
appearing in the f wall-function which is determined 
exactly from experimental measurement as opposed to 
being optimized numerically. In this sense the present 
model provides a more general formulation than models 
based on the ad-hoc inclusion of a flux Richardson 
number (and its associated model constant) in the 
equation for dissipation of kinetic energy of turbu­
lence. 
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APPENDIX: DETAILED DERIVATION OF GENERAL C~ FUNCTION 

The starting point for the derivation Of the C~ 

function is Eq. (20) in the main text. Noting that 
the diffusion terms D .. are never actually required 

~J d 
in the formulation and that Uz = 0 and "'§Z = 0, 

(assumption of 2-D mean flow) Eq. (20) yields the 

f 11 . . f ~ - 2- d -- . 1' o o~ng express~ons or ue , ur an u6ur ~n cy ~n-

drical coordinates: 

(A-1) 
U - D dUe 2 

2 ...!. u
2 + 2 - -- - - e: 

r 8 p rae 3 

") 

Du~ 

r D Dt- rr 

(A-2) 

(A-3) 

D a a ue a 
where, for convenienc.e, _ Dt = at + Ur ar + 7 ae has 

been used even though a/at= 0. In Eqs. A.l- A.3 
contributions to the pressure-strain terms are modeled 
according to Eq. (22) and Table 2. In cylindrical 
coordinates, these terms are: 

- c2 j_2 Uil (aue + ue\ -l e r ar r/ 

+ C' f ~ uu Ue + 2 u2 (()Ue + Ur\_ 
2 t e r r r rae r 1 

-t P 11 + ~; rj 

+ c
2 

(1 - l c• 2 2 

From Eq. (26) in the main text: 

2 2 
D ue ue 
1St- Dee " "k (P - e:l 

2 2 D.u u 
Dt r - Drr "' : (P - e:) 
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(A-4) 

(A-5) 

(A-7) 

(A-8) 



(A-9) 

Eqs. A-1 to A-9 lead to a system of algebraic 
~uations which can be solved for the three unknowns 

2 2 --
ue, ur and u6ur. The result is: 

h = 0 

au 
i = f [P + (C1 - 1) e) - 2 (1 - C2 ) a: 

au 
J = - ci f ~- 2 c2 c2 f a: 

(A-20) 

(A-21) 

(A-22) 

u2 = d (nt- jg) - n (bt- cj) + m (bg- en) 
8 a (nt- gj) - e (bt- cj) + i (bg- en) 

(A-lo) au u u8 2 au 
t = 2 (1 - C2) - 8 +....@. + C C' f (4--- _£) (A-23) ar r 2 2 r r 38 

u2 = a (ht - mg) - e ( dQ. - roc) + i ( dg - he) 
r a (nt- gj) - e (bt- cj) + i (bg- en) (A-ll) m = ~ [(c1 - 1) e + C2 (1 + C2 f) P] (A-24) 

Uil- a (nm- h,j)- e (bm- dj) + i (bh- dn) 
8 r- a (nt- gj) - e (bt- cj) + i (bg- en) (A-12) 

with the following values for the coefficients in the 
above expressions: 

a = 0 (A-13) 

au 
b = f [P- (l-C1+20l f) e] + 2(1-C2+2C2C2 f) a: (A-14) 

u
8 

au 
c = 2 (C 2 - 2 c2• C2 f - 1)(2 -- _£) r rae (A-15) 

u au 
d = £ e [C

1 
- 1 + c

2
(1 - 2 c

2
• f) :11.](2 ....@.- l ___r.)(A-16) 

3 e r r ae 

3 
u

8 1 au 
e = [1 - G (1 - - C' f) ](2 -- - _£) 

2 2 2 r r ae (A-17) 

Combining the Boussinesq approximation for u8ur' as given 

by Eq. (28) in the main text, with the algebraically de­
rived expression for u8ur given above yields a general 

expression for c~ of the form: 

(A-25) k aue 
al+l31 € ar 

c = ------~~~~~~--------------------~ 
" (1-6+6, +,··,(~ ',":) + y 2~ '#) 2 + 6 ,f,~) 3 

where a1 , 131 , a2 , 132 , y
2 

and o2 are lengthy algebraic 

functions of the flow variables and turbulence constants*. 
Eq. (A-25) does not show the explicit dependence of 

aue;aue aurfaue 
c~ on the parameters, oa .. rae;ar- ' ob:;:: ~ar, 

8 
.. au8;au8 s: = u8 j'au8 

c rae 3r ' u r t 3r ' the wall-function f and the 
ratio P/e. Using Eq. (11) in the main text it is 
possible to show that: 

(A-18) k au8 
(A-26) 

a = + 
1 -

€ ar = cl/2 
(A-19) ~ 

with a positive sign preceding· the above expression when 
au8 au

8 aT > 0 and negative when ar < 0. Substitution of 

Eq. (A-26) into Eq. ([-25) yields (after algebraic 
manipulation): 

2[(D + P/e)(l- B) - F (A- 1 + P/e)] ob(P/e)1/ 2 

(D + P/e)(A- 1 + P/e)[l- o + o )2 + 4 0 2 ]1 / 2 
c b 

* Expressions for these function are available in 
Pourahmadi [50 ] • 
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a 2 = {- E (2 8 - 8c) l(A- 1 + P/E:)[2F (1 + o) + 2 c2 C2 f (2 o - oc)] + 2 CJ.. f (1 - B) (8c - 2 o)} 

+ 2 E (D + P/s)(1- B)(8c- 2 8)(1 + o) + 4 F (1- c2 ) ob
2 

(1- B)(G- 1 + P/E~ 
· x P/1+(1- o + oc)

2 
+ 4 ob

2
](-(D + P/E)(A- 1 + P/E)(G- 1 + P/E)]} 

+ {- E (2 o - oc) 12/3 (D + 1 + P/E)(A- 1 + P/E) + 2/3 (D + B P/E) Ci r} 

+ E (1 + S)[2/3 (D + B P/o) ](D + P/oJ;\- (D + P/o)[A - 1 +Ph) (G - 1 + P/o)(1 - S + S
0

)) 

(A-29) 

a
3 

= + {E(2 o - 8c) 8b {2 (1 - B)[2 F (~ + 8) + 2 c2 c2 f (28 - oc) l + 4 (1 - B) (8c - 28) c2 c2 r} 

+ 4 E F (1- B)(8 - 28)(1 + o) ob} [ P/E 2 2]

312 I{- (D + P/d(A- 1 + P/E)(G- 1 + P/s)l 
c (1 - o + oc l + 4 8b I f 

+ {2/3 E (28 - eSc) ob {2(D + H P/8)(1- B) + 2 (D + B P/E) C2 C2 r} (A-
3
0) 

+ 4/3 E (1 + o)(D + B P/E) F (\} r. P/€2 2]
112 

l<1 - o + 8c) + 4 8b 

~- (D + P/o)(A- 1 + P/o)(G- 1 + P/o)(1- S + s,J 
In the above expressions: 

A = c1 ( 1 + 2 f Ci/c
1

) 

B = c2 (1 - 2 f C2) 

D = c1 - 1 

E = 1 - c2 (1 - 3/2 f C2) 

F = 1 - c2 

G = c1 (1 + 3/2 f CJ../C1 ) 

H = c2 (1 + f C2) 

(A-31) 
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